dc.contributor.advisor | Salazar Llorente, Enrique | |
dc.contributor.author | Barragán Torres, Rodolfo Alexander | |
dc.date.accessioned | 2024-09-03T15:04:50Z | |
dc.date.available | 2024-09-03T15:04:50Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://dspace.utb.edu.ec/handle/49000/17134 | |
dc.description | In this study, the different types of aerobic, anaerobic and combined decomposition are evaluated
to verify their effectiveness in obtaining biogas and biofertilizers from agri-food, livestock,
gardening and agricultural waste, and the results show that organic matter from agri-food waste
and livestock waste, are particularly suitable for anaerobic digestion, obtaining biogas and
biofertilizers with a very high content of macro and micronutrients, including nitrogen, phosphorus,
potassium and calcium, which can substantially improve soil fertility, and also have very positive
effects on soil fertility. Anaerobic degradation is divided into several phases: hydrolysis,
acidogenesis, acidogenesis, acetogenesis, methanogenesis, where organic macromolecules are
broken down and transformed into biogas and digestate. On the other hand, the process in
aerobiosis, contains glycolysis, Krebs cycle, and concludes with a production of CO2, water, ATP,
and also produces biofertilizers with a high content of macro and micronutrients. As for biogas
production, the most efficient is anaerobic co-digestion, since it produces 0.00128 m3 of biogas
per ton of raw material per day, obtaining 0.008 m3 in a period of fifteen days. The production of
biofertilizers the anaerobic co-digestion, although the aerobic one, achieves a better yield,
generating values of 0.026 and 0.030 m3 per ton of raw material | es_ES |
dc.description | In this study, the different types of aerobic, anaerobic and combined decomposition are evaluated
to verify their effectiveness in obtaining biogas and biofertilizers from agri-food, livestock,
gardening and agricultural waste, and the results show that organic matter from agri-food waste
and livestock waste, are particularly suitable for anaerobic digestion, obtaining biogas and
biofertilizers with a very high content of macro and micronutrients, including nitrogen, phosphorus,
potassium and calcium, which can substantially improve soil fertility, and also have very positive
effects on soil fertility. Anaerobic degradation is divided into several phases: hydrolysis,
acidogenesis, acidogenesis, acetogenesis, methanogenesis, where organic macromolecules are
broken down and transformed into biogas and digestate. On the other hand, the process in
aerobiosis, contains glycolysis, Krebs cycle, and concludes with a production of CO2, water, ATP,
and also produces biofertilizers with a high content of macro and micronutrients. As for biogas
production, the most efficient is anaerobic co-digestion, since it produces 0.00128 m3 of biogas
per ton of raw material per day, obtaining 0.008 m3 in a period of fifteen days. The production of
biofertilizers the anaerobic co-digestion, although the aerobic one, achieves a better yield,
generating values of 0.026 and 0.030 m3 per ton of raw material | es_ES |
dc.description.abstract | Los residuos orgánicos a nivel mundial representas el 40% en este estudio se evalúan los
diferentes tipos de descomposición aerobia, anaerobia y la combinada para constatar la eficacia
de éstos a la hora de tener biogás y biofertilizantes a partir de residuos agroalimentarios,
ganaderos, de jardinería y agrícolas, y los resultados muestran que la materia orgánica
proveniente del residuo agroalimentario y los residuos ganaderos, son especialmente indicados
para la digestión anaerobia, obteniendo biogás y biofertilizantes con un contenido muy alto de
macro y micronutrientes, entre ellos, nitrógeno, fósforo, potasio y calcio, que permiten mejorar de
manera muy sustancial la fertilidad de los suelos, y además, con efectos muy positivos en la
fertilidad de los suelos. La degradación anaerobia se divide en varias fases: hidrólisis,
acidogénesis, acidogénesis, acetogénesis, metanogénesis, donde se descomponen las
macromoléculas orgánicas y se transforman en biogás y en digestato. Por otro lado, el proceso
en aerobiosis, contiene la glucólisis, ciclo de Krebs, y concluye con una producción de CO2, agua,
ATP, y además produce biofertilizantes con un alto contenido en macro y micronutrientes. En
cuanto a la producción de biogás, el más eficiente resulta la co-digestión anaerobia, puesto que
llega a producir diariamente 0,00128 m3 de biogás por tonelada de materia prima, consiguiendo
unas 0,008 m3 en un plazo de quince días. La producción de biofertilizantes la co-digestión
anaerobia, aunque la aerobia, consigue un mejor rendimiento, generando valores de 0,026 y
0,030 m3 por tonelada de materia prima. | es_ES |
dc.format.extent | 40 p. | es_ES |
dc.language.iso | es | es_ES |
dc.publisher | Babahoyo, Ecuador | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Ecuador | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ec/ | * |
dc.subject | Descomposición | es_ES |
dc.subject | Digestión | es_ES |
dc.subject | Materia orgánica | es_ES |
dc.title | Comparación de tres tratamientos (aerobia, anaerobia y combinado) para la descomposición de materia orgánica en la obtención de biogás y biofertilizante en el Ecuador. | es_ES |
dc.type | bachelorThesis | es_ES |