Show simple item record

dc.contributor.advisorSalazar Llorente, Enrique
dc.contributor.authorBarragán Torres, Rodolfo Alexander
dc.date.accessioned2024-09-03T15:04:50Z
dc.date.available2024-09-03T15:04:50Z
dc.date.issued2024
dc.identifier.urihttp://dspace.utb.edu.ec/handle/49000/17134
dc.descriptionIn this study, the different types of aerobic, anaerobic and combined decomposition are evaluated to verify their effectiveness in obtaining biogas and biofertilizers from agri-food, livestock, gardening and agricultural waste, and the results show that organic matter from agri-food waste and livestock waste, are particularly suitable for anaerobic digestion, obtaining biogas and biofertilizers with a very high content of macro and micronutrients, including nitrogen, phosphorus, potassium and calcium, which can substantially improve soil fertility, and also have very positive effects on soil fertility. Anaerobic degradation is divided into several phases: hydrolysis, acidogenesis, acidogenesis, acetogenesis, methanogenesis, where organic macromolecules are broken down and transformed into biogas and digestate. On the other hand, the process in aerobiosis, contains glycolysis, Krebs cycle, and concludes with a production of CO2, water, ATP, and also produces biofertilizers with a high content of macro and micronutrients. As for biogas production, the most efficient is anaerobic co-digestion, since it produces 0.00128 m3 of biogas per ton of raw material per day, obtaining 0.008 m3 in a period of fifteen days. The production of biofertilizers the anaerobic co-digestion, although the aerobic one, achieves a better yield, generating values of 0.026 and 0.030 m3 per ton of raw materiales_ES
dc.descriptionIn this study, the different types of aerobic, anaerobic and combined decomposition are evaluated to verify their effectiveness in obtaining biogas and biofertilizers from agri-food, livestock, gardening and agricultural waste, and the results show that organic matter from agri-food waste and livestock waste, are particularly suitable for anaerobic digestion, obtaining biogas and biofertilizers with a very high content of macro and micronutrients, including nitrogen, phosphorus, potassium and calcium, which can substantially improve soil fertility, and also have very positive effects on soil fertility. Anaerobic degradation is divided into several phases: hydrolysis, acidogenesis, acidogenesis, acetogenesis, methanogenesis, where organic macromolecules are broken down and transformed into biogas and digestate. On the other hand, the process in aerobiosis, contains glycolysis, Krebs cycle, and concludes with a production of CO2, water, ATP, and also produces biofertilizers with a high content of macro and micronutrients. As for biogas production, the most efficient is anaerobic co-digestion, since it produces 0.00128 m3 of biogas per ton of raw material per day, obtaining 0.008 m3 in a period of fifteen days. The production of biofertilizers the anaerobic co-digestion, although the aerobic one, achieves a better yield, generating values of 0.026 and 0.030 m3 per ton of raw materiales_ES
dc.description.abstractLos residuos orgánicos a nivel mundial representas el 40% en este estudio se evalúan los diferentes tipos de descomposición aerobia, anaerobia y la combinada para constatar la eficacia de éstos a la hora de tener biogás y biofertilizantes a partir de residuos agroalimentarios, ganaderos, de jardinería y agrícolas, y los resultados muestran que la materia orgánica proveniente del residuo agroalimentario y los residuos ganaderos, son especialmente indicados para la digestión anaerobia, obteniendo biogás y biofertilizantes con un contenido muy alto de macro y micronutrientes, entre ellos, nitrógeno, fósforo, potasio y calcio, que permiten mejorar de manera muy sustancial la fertilidad de los suelos, y además, con efectos muy positivos en la fertilidad de los suelos. La degradación anaerobia se divide en varias fases: hidrólisis, acidogénesis, acidogénesis, acetogénesis, metanogénesis, donde se descomponen las macromoléculas orgánicas y se transforman en biogás y en digestato. Por otro lado, el proceso en aerobiosis, contiene la glucólisis, ciclo de Krebs, y concluye con una producción de CO2, agua, ATP, y además produce biofertilizantes con un alto contenido en macro y micronutrientes. En cuanto a la producción de biogás, el más eficiente resulta la co-digestión anaerobia, puesto que llega a producir diariamente 0,00128 m3 de biogás por tonelada de materia prima, consiguiendo unas 0,008 m3 en un plazo de quince días. La producción de biofertilizantes la co-digestión anaerobia, aunque la aerobia, consigue un mejor rendimiento, generando valores de 0,026 y 0,030 m3 por tonelada de materia prima.es_ES
dc.format.extent40 p.es_ES
dc.language.isoeses_ES
dc.publisherBabahoyo, Ecuadores_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/*
dc.subjectDescomposiciónes_ES
dc.subjectDigestiónes_ES
dc.subjectMateria orgánicaes_ES
dc.titleComparación de tres tratamientos (aerobia, anaerobia y combinado) para la descomposición de materia orgánica en la obtención de biogás y biofertilizante en el Ecuador.es_ES
dc.typebachelorThesises_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Ecuador
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Ecuador