dc.contributor.advisor | Uvidia Vélez, Martha | |
dc.contributor.author | Espín Pino, Jenifer Narcisa | |
dc.date.accessioned | 2023-10-31T15:05:10Z | |
dc.date.available | 2023-10-31T15:05:10Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://dspace.utb.edu.ec/handle/49000/14929 | |
dc.description | Corn (Zea mays L) is an essential crop in the world, with a significant impact on human nutrition, animal nutrition, industry and the economy. The proposed objective was to determine the main Artificial Intelligence used for the incidence and pest damage in corn cultivation. The conclusions determined that by examining their input variables, the results produced, the type of processing and the evaluation, the decision support systems were able to characterize the artificial intelligence techniques used in them. The most common input variables, along with plant variables to a lesser extent, are climatic variables. Furthermore, it was discovered that few studies offered recommendations to the farmer, with the most typical results in these systems being indications to actuators or visualizations of results; Agriculture is gradually becoming digital. The application of artificial intelligence to agriculture, especially corn cultivation, opens new opportunities to improve the exploitation and sustainability of resources. The implementation of sensors and the use of algorithms to predict behaviors and collect data are the tools and instruments used in agriculture with the objective of using them in the cultivation of corn and identifying harmful organisms that affect the crop; The Ministry of Agriculture and related institutions that support medium and small farmers should establish units that monitor artificial intelligence technologies used in agriculture and encourage connectivity at the local level because applications of artificial intelligence in agriculture are developing quickly. rural, especially to reduce the prevalence of corn pests and thus promote a more sustainable and effective use of all resources and artificial intelligence, especially machine learning, must be included in the training of farmers. | es_ES |
dc.description | Corn (Zea mays L) is an essential crop in the world, with a significant impact on human nutrition, animal nutrition, industry and the economy. The proposed objective was to determine the main Artificial Intelligence used for the incidence and pest damage in corn cultivation. The conclusions determined that by examining their input variables, the results produced, the type of processing and the evaluation, the decision support systems were able to characterize the artificial intelligence techniques used in them. The most common input variables, along with plant variables to a lesser extent, are climatic variables. Furthermore, it was discovered that few studies offered recommendations to the farmer, with the most typical results in these systems being indications to actuators or visualizations of results; Agriculture is gradually becoming digital. The application of artificial intelligence to agriculture, especially corn cultivation, opens new opportunities to improve the exploitation and sustainability of resources. The implementation of sensors and the use of algorithms to predict behaviors and collect data are the tools and instruments used in agriculture with the objective of using them in the cultivation of corn and identifying harmful organisms that affect the crop; The Ministry of Agriculture and related institutions that support medium and small farmers should establish units that monitor artificial intelligence technologies used in agriculture and encourage connectivity at the local level because applications of artificial intelligence in agriculture are developing quickly. rural, especially to reduce the prevalence of corn pests and thus promote a more sustainable and effective use of all resources and artificial intelligence, especially machine learning, must be included in the training of farmers. | es_ES |
dc.description.abstract | El maíz (Zea mays L), es un cultivo esencial en el mundo, con un impacto significativo en la alimentación humana, la alimentación animal, la industria y la economía. El objetivo propuesto fue determinar las principales Inteligencia Artificial usadas para la incidencia y daño de plagas en el cultivo de maíz. Las conclusiones determinaron que al examinar sus variables de entrada, los resultados producidos, el tipo de procesamiento y la evaluación, los sistemas de apoyo a la decisión pudieron caracterizar las técnicas de inteligencia artificial utilizadas en ellos. Las variables de entrada más comunes, junto con las variables vegetales en menor medida, son las variables climáticas. Además, se descubrió que pocos estudios ofrecían recomendaciones al agricultor, siendo los resultados más típicos en estos sistemas indicaciones a actuadores o visualizaciones de resultados; la agricultura se está digitalizando gradualmente. La aplicación de la inteligencia artificial a la agricultura, especialmente al cultivo de maíz, abre nuevas oportunidades para mejorar la explotación y la sostenibilidad de los recursos. La implementación de sensores y el uso de algoritmos para predecir comportamientos y recolectar datos son las herramientas e instrumentos utilizados en la agricultura con el objetivo de utilizarlos en el cultivo del maíz e identificar organismos nocivos que afecten el cultivo; el Ministerio de Agricultura y las instituciones relacionadas que apoyan a los medianos y pequeños agricultores deben establecer unidades que supervisen las tecnologías de inteligencia artificial utilizadas en la agricultura y fomenten la conectividad a nivel local porque las aplicaciones de la inteligencia artificial en la agricultura se están desarrollando rápidamente. rural, especialmente para reducir la prevalencia de plagas del maíz y así fomentar un uso más sostenible y eficaz de todos los recursos y la inteligencia artificial, especialmente el aprendizaje automático, debe estar incluida en la formación de los agropecuarios. | es_ES |
dc.format.extent | 22 p. | es_ES |
dc.language.iso | es | es_ES |
dc.publisher | BABAHOYO: UTB, 2023 | es_ES |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 Ecuador | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ec/ | * |
dc.subject | Drones | es_ES |
dc.subject | Algoritmos | es_ES |
dc.subject | Gramíneas | es_ES |
dc.subject | Plagas | es_ES |
dc.title | Inteligencia artificial para determinar la incidencia y daño a causa de organismos plagas en el cultivo de maíz | es_ES |
dc.type | bachelorThesis | es_ES |