Show simple item record

dc.contributor.advisorSoto Valle, Carlos
dc.contributor.authorRamírez Palma, Aarón David
dc.date.accessioned2023-11-07T14:32:34Z
dc.date.available2023-11-07T14:32:34Z
dc.date.issued2023
dc.identifier.urihttp://dspace.utb.edu.ec/handle/49000/15039
dc.descriptionThere is a paradigm that goes hand in hand with what is known as programming and parallel computing, which establishes a response inspired by the organization of data in enormous volumes. In this context, a framework that allows the processing of large amounts of data through parallel computing in distributed environments is incorporated into this research. As a result of what was expressed above, this research is focused on exploring how the Map Reduce tool is used in the management of Big Data and thereby providing significant information to undergraduate students in the use of this tool for the processing of large sets. . of data. This research is developed using the bibliographic method, framed in obtaining information from different sources that allow the purpose of the research to be fulfilled. It is also important to mention that the study focuses on the operation of the Map Reduce tool, with a point of More pragmatic viewes_ES
dc.descriptionThere is a paradigm that goes hand in hand with what is known as programming and parallel computing, which establishes a response inspired by the organization of data in enormous volumes. In this context, a framework that allows the processing of large amounts of data through parallel computing in distributed environments is incorporated into this research. As a result of what was expressed above, this research is focused on exploring how the Map Reduce tool is used in the management of Big Data and thereby providing significant information to undergraduate students in the use of this tool for the processing of large sets. . of data. This research is developed using the bibliographic method, framed in obtaining information from different sources that allow the purpose of the research to be fulfilled. It is also important to mention that the study focuses on the operation of the Map Reduce tool, with a point of More pragmatic viewes_ES
dc.description.abstractExiste un paradigma que va de la mano con lo que se conoce como programación y computación paralela, la misma que establece una inspirada respuesta en la organización de datos en volúmenes enormes. En este contexto se incorpora en esta investigación un ramework que permita el procesamiento de grandes cantidades de datos a través de computación paralela en ambientes distribuidos. En consecuencia, a lo expresado anteriormente, la presente investigación está enfocada en explorar como se utiliza la herramienta Map Reduce en la administración de Big Data y con ello aportar información significativa a los estudiantes de pregrado en la utilización de esta herramienta para el procesamiento de grandes conjuntos de datos. Esta investigación se desarrolla utilizando el método descriptivo, enmarcado en la obtención de información de distintas fuentes que permitan cumplir con el propósito de la investigación, además es importante mencionar que el estudio se centra en el funcionamiento de la herramienta Map Reduce, con un punto de vista más pragmático.es_ES
dc.format.extent47 p.es_ES
dc.language.isoeses_ES
dc.publisherBabahoyo: UTB-FAFI. 2023es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/*
dc.subjectBig Dataes_ES
dc.subjectMap Reducees_ES
dc.subjectProcesamiento distribuidoes_ES
dc.subjectVolumen de datoses_ES
dc.subjectParalelismoes_ES
dc.titleEstudio de la herramienta map reduce y su utilización en la big dataes_ES
dc.typebachelorThesises_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Ecuador
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Ecuador