Show simple item record

dc.contributor.advisorVillares Pazmiño, José Danilo
dc.contributor.authorRiofrio Villamar, Steven Gonzalo
dc.date.accessioned2023-06-05T14:43:58Z
dc.date.available2023-06-05T14:43:58Z
dc.date.issued2023
dc.identifier.urihttp://dspace.utb.edu.ec/handle/49000/14248
dc.descriptionThe following case study investigated the concepts of the main methods used to date for facial recognition, such as the Eigenface and Fisherface algorithms, the reader was introduced to the mathematical principles for understanding these algorithms as are the concepts of PCA and LDA that are dimensionality reduction methods, these methods are widely used in data analysis in classification algorithms and to be able to give predictions. The PCA and LDA methods are very powerful tools that allow analyzing large data sets, in order to analyze patterns, therefore, studying these methods is very important, and their applications are very wide in Data Science, Machine Learning. In this case study, the different metrics on which they are based are analyzed in order to measure performance, accuracy, sensitivity and precision, in order to reveal which of the two algorithms is the most efficient for system security.es_ES
dc.descriptionThe following case study investigated the concepts of the main methods used to date for facial recognition, such as the Eigenface and Fisherface algorithms, the reader was introduced to the mathematical principles for understanding these algorithms as are the concepts of PCA and LDA that are dimensionality reduction methods, these methods are widely used in data analysis in classification algorithms and to be able to give predictions. The PCA and LDA methods are very powerful tools that allow analyzing large data sets, in order to analyze patterns, therefore, studying these methods is very important, and their applications are very wide in Data Science, Machine Learning. In this case study, the different metrics on which they are based are analyzed in order to measure performance, accuracy, sensitivity and precision, in order to reveal which of the two algorithms is the most efficient for system security.es_ES
dc.description.abstractEl siguiente caso de estudio se investigó sobre los conceptos de los principales métodos que hasta el día de hoy se utilizan para el reconocimiento facial, como son los algoritmos Eigenface y Fisherface , se introdujo al lector por los principios matemáticos para la comprensión de estos algoritmos como son los conceptos de PCA Y LDA que son métodos de reducción de dimensionalidad, estos métodos son muy utilizados en el análisis de datos en algoritmos de clasificación y poder dar predicciones. Los métodos PCA Y LDA son herramientas muy poderosas que permiten analizar grandes conjuntos de datos, con el fin de analizar patrones, por lo tanto, estudiar estos métodos es muy importante, y sus aplicaciones son muy amplia en la Ciencia de datos, Machine Learning. En este caso de estudio se analizan las distintas métricas en las que se basan para poder medir el rendimiento, exactitud, sensibilidad y precisión, con el fin de dar a conocer cuál de los dos algoritmos es el más eficiente para la seguridad de los sistemas.es_ES
dc.format.extent54 p.es_ES
dc.language.isoeses_ES
dc.publisherBabahoyo: UTB-FAFI. 2023es_ES
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 Ecuador*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/ec/*
dc.subjectPcaes_ES
dc.subjectLdaes_ES
dc.subjectEigenfacees_ES
dc.subjectFisherfacees_ES
dc.subjectVectores propioses_ES
dc.subjectValores propioes_ES
dc.subjectMatriz de confusiones_ES
dc.subjectRecalles_ES
dc.subjectEspecificityes_ES
dc.subjectEigenvectoreses_ES
dc.titleAnálisis comparativo de los algoritmos Eigenface y Fisherface de reconocimiento facial para la seguridad de los sistemas de información.es_ES
dc.typebachelorThesises_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Ecuador
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Ecuador