UNIVERSIDAD TECNICA DE BABAHOYO
FACULTAD DE ADMINISTRACION FINANZAS E INFORMATICA

PROCESO DE TITULACIÓN
MARZO 2018 – OCTUBRE 2018

PROPUESTA TECNOLÓGICA DE GRADO O DE FIN DE CARRERA
PRUEBA PRÁCTICA

INGENIERÍA EN SISTEMAS
PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERO EN SISTEMAS

TEMA:
SISTEMAS DE ALERTA TEMPRANA PARA NOTIFICACIÓN DE RIESGO DE INUNDACIONES PARA EL CANTÓN VINCES (SAT).

AUTOR:
DARIO JAVIER SUAREZ PEÑA.

TUTOR:
ing: ANA DEL ROCÍO FERNÁNDEZ TORRES.

AÑO - 2018.
Dedicatoria:

Este proyecto va dedicado primero a Dios por hacer realidad de este sueño tan anhelado, ya que gracias a él logre culminar mi Carrera Universitaria, a mis Padres, Hermana que siempre estuvieron en los buenos y malos momentos brindándome su apoyo y sus consejos para hacer de mí una mejor persona, a mi Familia, Amigos, a todas las personas que creyeron en mí.
Agradecimiento:

Primero, Agradezco a Dios quien ha forzado mi camino y me ha dirigido por el sendero correcto, a mis Padres, Hermana, Familia, quienes han creído en mí siempre, brindándome ejemplo de superación, humildad y sacrificio; enseñándome a valorar todo lo que tengo, y a todas las personas que estuvieron siempre en los buenos y malos momentos, especialmente al Ing. José Sandoya Villafuerte, al Ing. Omar Montece Moreno, a la Ing. María Gonzales Valero y a mi tutora la Ing. Ana Del Roció Fernández Torres porque han fomentado en mí, el deseo de superación y de triunfo en la vida.
Contenido

Dedicatoria: ... 1
Agradecimiento: ... II
Introducción... 1
CAPITULO I .. 3
 1. Ámbito del Problema:.. 3
 1.1. ¿Qué lo Hace Importante?... 6
 1.2. ¿Qué lo Hace Diferente?... 6
 1.3. Aportación de la Propuesta.. 7
 2. Establecimiento de Requerimiento... 7
 2.1. Requerimientos Funcionales del Sistema... 9
 2.2. Requerimientos Funcionales del Servidor... 12
 2.3. Requerimientos no funcionales del Sistema.. 14
 2.4. Requerimientos no funcionales del Servidor.. 15
 3. Justificación de Requerimientos a Satisfacer... 19
CAPITULO II .. 21
 1. Definición del Prototipo Tecnológico.. 21
 2. Fundamentación Teórica del Prototipo... 22
 2.1. Metodología... 23
 2.1.1. ¿Se debe utilizar el modelo AUP?... 24
 2.2. Arquitectura.. 28
 2.3. Tecnología... 30
 2.3. 1. Plataforma Arduino.. 30
 2.3.2. App Inventor... 30
 2.3.3. PostgreSQL:.. 31
 2.3.4. NetBeans.. 32
 2.3.5. Arduino Mega.. 33
 2.3.6. Bluetooth.. 34
 2.3.7. Módulo SIM900.. 34
 2.3.8. Protoboard... 35
 2.3.9. Sensor Ultrasónico HC -SR04... 36
 2.3.10. Sensor de Agua... 37
 2.3.11. Servo Motor... 37
 2.3.12. Relé... 38
 2.3.13. Bomba de Agua Sumergible... 39
3. **Objetivos del Prototipo:**
 - **Objetivo General:**
 - **Objetivos Específicos:**

4. **Diseño del Prototipo:**
 - **Diseño de conexiones del circuito:**
 - **Diseño de conexiones del circuito:**

1.4. **Diseño de circuito impreso**

2. **Ejecución y/o ensamblaje del prototipo**
 - **Ejecución del sistema**
 - **Ensamblaje del prototipo.**

CAPITULO III.

1. **Plan de evaluación.**
 - **Funcionalidad y facilidad de uso**
 - **Estabilidad**
 - **Compatibilidad**
 - **Interpolaridad**

2. **Resultados**
 - **Análisis de resultado**

3. **Conclusiones y recomendaciones**
 - **Conclusiones**
 - **Recomendaciones**
ÍNDICE DE ILUSTRACIONES.

<table>
<thead>
<tr>
<th>Ilustración</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Metodología AUP)</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>(Diseño Cliente/Servidor)</td>
<td>29</td>
</tr>
<tr>
<td>3</td>
<td>(Plataforma Arduino)</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>(App Inventor)</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>(PostgreSQL)</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>(NetBeans)</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>(Placa Arduino)</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>(Bluetooth)</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>(Modulo SIM900)</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>(Protoboard)</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>(Sensor Ultrasónico HC – SR04)</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>(Sensor de Agua)</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>(Servo Motor)</td>
<td>37</td>
</tr>
<tr>
<td>14</td>
<td>(Relé)</td>
<td>38</td>
</tr>
<tr>
<td>15</td>
<td>(Bomba de Agua Sumergible)</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>(Buzzer)</td>
<td>39</td>
</tr>
<tr>
<td>17</td>
<td>(Leds)</td>
<td>40</td>
</tr>
<tr>
<td>18</td>
<td>(Resistencias)</td>
<td>40</td>
</tr>
<tr>
<td>19</td>
<td>(Cables Macho/Hembra)</td>
<td>41</td>
</tr>
<tr>
<td>20</td>
<td>(Diseño Caso de Uso)</td>
<td>44</td>
</tr>
<tr>
<td>21</td>
<td>(Diseño de Actividades)</td>
<td>44</td>
</tr>
<tr>
<td>22</td>
<td>(Diseño de Clase)</td>
<td>45</td>
</tr>
<tr>
<td>23</td>
<td>(Diseño Conceptual del funcionamiento del sistema)</td>
<td>45</td>
</tr>
<tr>
<td>24</td>
<td>(Diseño del prototipo)</td>
<td>46</td>
</tr>
<tr>
<td>25</td>
<td>(Diseño de conexiones del circuito)</td>
<td>47</td>
</tr>
<tr>
<td>26</td>
<td>(Diseño de circuito impreso)</td>
<td>48</td>
</tr>
<tr>
<td>27</td>
<td>(Ejecución del sistema)</td>
<td>49</td>
</tr>
<tr>
<td>28</td>
<td>(Configuración de IP)</td>
<td>50</td>
</tr>
<tr>
<td>29</td>
<td>(Inicio de sesión)</td>
<td>51</td>
</tr>
<tr>
<td>30</td>
<td>(Estado del sistema)</td>
<td>51</td>
</tr>
<tr>
<td>31</td>
<td>(Consulta de los datos)</td>
<td>52</td>
</tr>
<tr>
<td>32</td>
<td>(Funcionamiento de la tarjeta Arduino mega)</td>
<td>52</td>
</tr>
<tr>
<td>33</td>
<td>(Conexiones de los módulos para el prototipo)</td>
<td>53</td>
</tr>
<tr>
<td>34</td>
<td>(Instalación del prototipo en la maqueta)</td>
<td>53</td>
</tr>
<tr>
<td>35</td>
<td>(Pruebas del prototipo)</td>
<td>54</td>
</tr>
<tr>
<td>36</td>
<td>Inundación en el Cantón Vinces 1</td>
<td>66</td>
</tr>
<tr>
<td>37</td>
<td>Inundación en el Cantón Vinces 2</td>
<td>66</td>
</tr>
<tr>
<td>38</td>
<td>Inundación en el Cantón Vinces 3</td>
<td>67</td>
</tr>
<tr>
<td>39</td>
<td>Derrumbe en el Cantón Vinces</td>
<td>67</td>
</tr>
</tbody>
</table>
INDICE DE TABLAS.

Tabla 1 – (RFS 01) .. 9
Tabla 2 – (RFS 02) .. 10
Tabla 3 – (RFS 03) .. 10
Tabla 4 – (RFS 04) .. 10
Tabla 5 – (RFS 05) .. 11
Tabla 6 – (RFS 06) .. 11
Tabla 7 – (RFS 07) .. 11
Tabla 8 – (RFS 08) .. 12
Tabla 9 - (RFS 01) .. 12
Tabla 10 - (RFS 02) .. 12
Tabla 11- (RFS 03) .. 12
Tabla 12 – (RFS 04) .. 13
Tabla 13 – (RFS 05) .. 13
Tabla 14 – (RNFS 01) .. 14
Tabla 15 – (RNFS 02) .. 14
Tabla 16 – (RNFS 03) .. 14
Tabla 17 – (RNFS 04) .. 15
Tabla 18 – (RNFS 01) .. 15
Tabla 19 – (Personal Involucrado en el Sistema) .. 16
Tabla 20 – (Administrador del Sistema) .. 17
Tabla 21 – (Operador del Sistema) ... 17
Tabla 22 – (Especialista en Sistema) ... 17
Tabla 23 – (Técnico en Sistema) ... 18
Tabla 24 – (Gestión Ambiental y Seguridad Ciudadana) ... 18
Tabla 25 – (Interacciones del Proyecto) .. 26
Tabla 26 – (Funcionalidad y facilidad de uso) ... 55
Tabla 27 – (Estabilidad) .. 56
Tabla 28 – (Compatibilidad) .. 57
Tabla 29 – (Interpolaridad) .. 57
Tabla 30 – (Resultados) .. 58
Introducción.

A nivel mundial las inundaciones ocupan los primeros lugares entre los factores con mayor grado de problemas en la sociedad comunitaria por lo que afectan en las diferentes partes del mundo, estas suelen producirse en las zonas urbanas y rurales por medio de las estaciones climáticas, como son las lluvias torrenciales esto hace que los ríos se desborden, por lo que las convierte en una amenaza con mayor potencial llevando a causar daños sumamente graves en las calles, casas, zonas agrícolas, entre otros.

Actualmente la tecnología a nivel mundial ha logrado un cambio altamente favorable para la sociedad, como el desarrollo de los sistemas de telecomunicaciones y las formas apropiadas para el acceso a la información, por otra parte los tipos de tecnología pueden ser inalámbrica como también de manera cableada, sin embargo, los medios de comunicaciones tanto por radio como vía móvil son sumamente importantes por lo que pueden llegar a interconectarse con otras tecnologías y formar sistemas de vigilancias, alertas, entre otros, estos pueden ser utilizado en los diferentes ámbitos, llevando a cubrir las necesidades utilizando técnicas y estrategias de manera aplicada a los problemas que se presentan en la vida diaria.

Sin embargo, las personas se ven afectadas por los fenómenos naturales como es las inundaciones, al no contar con un medio de comunicación de alerta que sirva de aviso ante la probabilidad de ocurrencia que se genere dicho fenómeno.

Por otra parte, al no haber un Sistema que permita dar soluciones a los pequeños problemas sobre el manejo y control de los estados del nivel de agua del río en que se encuentre, se presentaran problemas como, por ejemplo: la falta de toma de decisiones urgentes por parte del departamento de gestión de riesgo, que beneficie a las personas antes un suceso, el no uso adecuado de las tecnologías acorde a los problemas existentes en el GAD.
La elaboración del Sistema está enfocado en la sub línea de investigación Desarrollo Eficaz de Sistemas Informáticos, haciendo uso de la metodología de desarrollo de software llamado proceso unificado ágil, teniendo en cuenta que dicha metodología se basa en el diseño, elaboración, construcción y prueba de aplicaciones móviles a corto plazo, para realizar el análisis de los requisitos necesarios para el Sistema, se utilizó las técnicas de observación y entrevista, con el fin de obtener información útil para su correcto desarrollo.

Determinando la factibilidad del sistema cumpliendo todos los requerimientos establecidos por el GAD de Vinces y poder ofrecer un servicio eficiente y eficaz contra las inundaciones.
CAPITULO I.

1. Ámbito del Problema:

El Cantón Vinces pasa por un sinnúmero de dificultades al momento de enfrentar las inundaciones, siendo una fuerte amenaza para los habitantes de la ciudad y hasta la actualidad no las han podido controlar, las cuales suelen producirse por medio de las estaciones climáticas, traen consigo las lluvias torrenciales, presentando riesgos y vulnerabilidades en las zonas urbanas, por lo que a pesar de que los departamentos encargados de las gestión de riesgos cuenta con los medios de comunicación adecuados como la telefonía móvil, hasta la actualidad no hacen uso de sistemas que sirvan como un medio de alerta para la prevención a las fuertes inundaciones, el desbordamiento de agua del río causan graves daños en el cantón dejando calles en mal estado, casas sumergidas, derrumbes de la infraestructura del malecón, en ocasiones este factor puede llegar a ocasionar la pérdida de vidas humanas y por último la perdida de bienes económicos.

En los últimos 3 años las inundaciones formadas por el Río del Cantón Vinces, son un fenómeno de alto grado que amenazada a las comunidades con la probabilidad de ocurrencia que se genere un impacto ocasionando daños graves y severos, por lo tanto las zonas que se encuentran en las orillas del malecón del río de Vinces son las más afectadas por estos fenómenos, siendo estas zonas las que se encuentran expuestas a inundarse, en los últimos años estas crecidas del río han provocado el deslizamiento de partes que conforman el malecón, esto hace que el agua ingrese con facilidad a las calles, casas, afectando la vida de los habitantes de la ciudad, arrojando considerables pérdidas de bienes sociales y económicos.

Sin embargo, en la actualidad las poblaciones que se encuentra a las orillas del malecón del río de Vinces, siguen estando expuestas a fenómenos amenazantes por inundaciones, debido a la vulnerabilidad por lo que la infraestructura del malecón se encuentra en mal estado.
Bajo las dificultades por las que pasan los habitantes de ciudad contra un fenómeno por inundación tenemos:

➢ El departamento de gestión de riesgo no cuenta con un sistema de alerta temprana como medio de alerta contra inundaciones.

➢ Índice bajo sobre el uso de los medios de comunicación móvil como una herramienta de alerta para el desarrollo de un sistema de alerta temprana.

➢ Dificultades al momento de tomar medidas adecuadas cuando hay probabilidad de ocurrencia por un fenómeno de inundación.

Por lo tanto, hoy se cuenta con herramientas “componentes” que nos permiten desarrollar sistemas y llevar un mejor control sobre el nivel del río, de tal forma esto hace que sea oportuno el uso de los sistemas de alerta temprana en conjunto con los departamentos de gestión de riesgo y de la población, siendo de gran ayuda para los habitantes puedan evitar, prevenir y afrontar las fuertes inundaciones, reduciendo pérdidas sociales y económicas.

Sin embargo, para que el sistema llegue a lograr su objetivo, en su desarrollo se optó por herramientas tecnológicas como: Arduino, App Inventor, módulo SIM900, sensores, servos motores y bombas de agua sumergibles.

La implementación de sistemas de monitoreo y sistemas integrales de alerta temprana, permiten de manera oportuna a las autoridades y comunidad en general tomar decisiones para la prevención de desastres (inundaciones) (Coll, 2013).

Limitaciones del Prototipo.

El sistema va a estar basado en un conjunto de sensores los cuales realizarán la tarea de monitorización ya que estarán en interacción con el agua del río.

Teniendo en cuenta que el sistema será el encargado de monitorear las 24 horas de forma remota, realizará funciones tales como:
Se utilizarán dos sensores ultrasónicos HC-SR04, para determinar el nivel de agua en que se encuentre el río dependiendo los tres niveles de crecida programados, serán diferenciados por medio de colores, amarillo (zona segura), verde (zona en riego), rojo (zona de impacto).

El primer sensor estará activado mientras el segundo no entrará en funcionamiento, cuando el primer sensor detecte los niveles de crecida descritos, se enviarán las alertas de mensaje por medio del módulo SIM900 a la persona encargada del departamento de riesgo para la toma de decisiones adecuadas.

Mientras el segundo sensor se activará solo cuando el primer sensor detecte el nivel de agua que determinen que la zona estará a punto de ser impactada, y como medio de alerta enviara la señal para que se activen las bocinas para alertar la vida de los habitantes.

Se abrirán las compuertas de los canales de manera automática, solo cuando los fenómenos naturales por inundación sean altamente fuertes, de manera que el agua ingrese a estos canales con el fin de que el río amenore su crecida y mantener la seguridad de los habitantes.

En caso de que se genere el desborde del río y el agua empiece a cubrir las calles, casas, el sensor de agua entrara en acción y enviara a prender las bombas de manera a automática, esta función solo se ejecutara cuando el sensor detecte un porcentaje agua que sea mayor de 50%, con el fin de enviar el agua hacia canales, pozas etc., caso contrario permanecerá apagada.

Se realizará la función de encendido y apagado de las luces que formaran el camino de emergencia de una zona segura para las personas estén a salvo de las inundaciones, en caso de que el agua ingrese a las casas y ocurra un apagón de energía.

También se hará uso de una aplicación la cual será desarrollada en App Inventor siendo un lenguaje desarrollador de aplicaciones móviles.
Mediante la aplicación móvil se visualizará, se almacenará y se consultara los datos en tiempo real donde estarán adjuntos los cambios de estados de niveles de agua del río en el transcurso del día.

Estas funciones brindaran una mayor seguridad a los departamentos de gestión de riesgos, a mejorar y a controlar la vida de las personas dentro de las comunidades.

1.1. ¿Qué lo Hace Importante?

Esto hace que tanto el departamento de gestión de riesgo como los habitantes se beneficiaran de la importancia que ofrece el Sistema contra las inundaciones.

Dicho Sistema facilitara dos tipos de alerta como medio de prevención, para que las autoridades y los habitantes puedan tomar a tiempo las medidas necesarias y afrontar estos fenómenos.

Determinando que este sistema le mostrara una mayor seguridad para que las comunidades no sean fuertemente afectadas por los fenómenos por inundación.

1.2. ¿Qué lo Hace Diferente?

El estudio sobre el desarrollo considera que el uso de Sistemas de Alerta Temprana, todavía no llega esta innovación tecnológica en el Cantón Vinces, siendo un tipo de herramienta de sumamente importancia, sabiendo que las funciones que cumple dicho sistema brindan la mayor seguridad a los departamentos de gestión de riesgo y los habitantes, al estar atentos antes los tipos de alertas de probabilidad de un ataque por inundación, y puedan evitar, prevenir y combatir dicho fenómeno tomando rápidamente medidas precisas.
1.3. Aportación de la Propuesta.

El sistema de alerta temprana contribuye con el fin de mejorar la vida a los habitantes afectados por las fuertes inundaciones, permitiéndoles realizar sus actividades con una mayor seguridad.

Este sistema hace que intervenga al proceso de descubrimiento de nuevas tecnologías, sabiendo que en la mayoría de caso las comunidades de otras ciudades no cuentan con un sistema que le permita alertar al departamento de gestión de riesgos y habitantes minutos antes de que se genere un ataque por inundación.

2. Establecimiento de Requerimiento.

Se deben identificar las dificultades por las cuales los habitantes se encuentran afectados por los impactos generados por las inundaciones, de este modo se desarrollará un sistema que logre controlar por medio de los sensores el estado de los niveles del agua del río y así prevenir la probabilidad de ocurrencia por inundaciones, de tal forma que mejore la vida de los habitantes, a continuación se mostraran varios puntos importantes los cuales generarán dichos cambios para mejorar el control de las dificultades.

➢ Los tipos de alerta les facilitara a los departamentos de gestión de riesgo y a los habitantes a tomar las medidas lo antes posible de que se genere el fenómeno.

➢ Fácil manejo de la información que será obtenida por medio de los sensores que estarán en constantemente trabajo, siendo enviada al departamento mediante el módulo SIM900.

➢ Brinda una mayor seguridad en los habitantes antes la presencia de un fenómeno.

➢ Descubrimiento de nuevas mejoras tecnológicas.
Por lo consiguiente se pretende hacer uso del lenguaje Arduino siendo un leguaje muy útil para el desarrollo del prototipo del Sistema de Alerta Temprana, su manejo es de manera fácil y adecuada, a la vez es caracterizado por ser un leguaje flexible, multiplataforma y suele ser de bajo costo, con el cual se pueden realizar la integración de un sinnúmero de componentes estos pueden ser de tipo hardware y software.

También se puede considera que el lenguaje Arduino realiza interacciones con otros tipos de software, logrando el desarrollo de aplicaciones sumamente fuertes y robustas.

Sin embargo, gracias a las caracterizas que nos ofrece el lenguaje Arduino, se tomó la decisión de desarrollar un Sistema de Alerta Temprana contra inundaciones para el Cantón Vinces.

➢ Es de bajo costo.
➢ Es un lenguaje flexible y de multiplataforma.
➢ Su entorno de programación con el cual trabaja suele ser simple y claro.
➢ Su programación es de código abierto.
➢ Realiza la interacción con diferentes tipos de componentes
➢ Suele tener un alto rendimiento.
➢ Permite realizar interacciones con otros tipos de software.

Por lo tanto, el Sistema requiere de un pc para realizar su respectiva automatización de las funciones a realizar.

➢ Intel Core i5 de 8th Gen.
➢ Memoria RAM de 8GB.
➢ Puertos de red.
➢ Suministro de energía.
El Sistema también hará uso de una aplicación móvil, para un mejor funcionamiento se debe utilizar un móvil de acuerdo con las características a describir:

- Pantalla 4.3, pixeles: 480 x 800.
- Android SO. 4.4 KitKat.

El software va a utilizar requerimientos tales como:

- PostgreSQL.
- NetBeans.
- App Inventor.

2.1. Requerimientos Funcionales del Sistema.

<table>
<thead>
<tr>
<th>Código: RFS-01</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: El SAT estará conformado de sensores y compones Arduino, además del entorno de desarrollo aplicativo App inventor, NetBeans y PostgreSQL.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Tabla 2 – (RFS 02)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-02</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
</tbody>
</table>

Descripción: El SAT monitorizará los sensores para la detección de los niveles de crecida del río programados.

Estado: Avance
Prioridad: ✓

Desarrollado Por: (Darío Suarez)

Tabla 3 – (RFS 03)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-03</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
</tbody>
</table>

Descripción: El SAT enviará mensaje de alerta cada vez que el primer sensor detecte uno de los tres niveles.

Estado: Avance
Prioridad: ✓

Desarrollado Por: (Darío Suarez)

Tabla 4 – (RFS 04)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-04</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
</tbody>
</table>

Descripción: El SAT activará el segundo sensor, cuando el primero detecte que el río esté a punto de desbordarse.

Estado: Avance
Prioridad: ✓

Desarrollado Por: (Darío Suarez)
Tabla 5 – (RFS 05)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-05</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT enviará a encender las bocinas cuando el segundo sensor detecte que el río esté a punto de desbordarse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado por: (Darío Suarez)

Tabla 6 – (RFS 06)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-06</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT hará encender la bomba de manera automática siempre y cuando el sensor de agua marque un porcentaje >= 50.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 7 – (RFS 07)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-07</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT enviará una señal y se abrirán las compuertas de los canales cada vez que el río se vaya a desbordar.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Tabla 8 – (RFS 08)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-08</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT formará un camino de emergencia el cual se activará para brindar la mayor seguridad a los habitantes cuando el agua haya ingresado a las calles, casas y se genere un apagón de luz.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
<td>✓</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

2.2. Requerimientos Funcionales del Servidor.

Tabla 9 - (RFS 01)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-01</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT se iniciará ejecutando desde el servidor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
<td>✓</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 10 - (RFS 02)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-01</th>
<th>Tipo</th>
<th>Requerimiento Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El SAT realizara la función de configuración de IP.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
<td>✓</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Tabla 11 - (RFS 03)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-02</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
<tr>
<td>Descripción:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado Avance</td>
<td></td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 12 – (RFS 04)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-01</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
<tr>
<td>Descripción:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado Avance</td>
<td></td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 13 – (RFS 05)

<table>
<thead>
<tr>
<th>Código:</th>
<th>RFS-03</th>
<th>Tipo</th>
<th>Requerimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Funcional</td>
<td></td>
</tr>
<tr>
<td>Descripción:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado Avance</td>
<td></td>
<td>Prioridad ✓</td>
<td></td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
2.3. Requerimientos no funcionales del Sistema.

Tabla 14 – (RNFS 01)

<table>
<thead>
<tr>
<th>Código: RNFS-01</th>
<th>Tipo</th>
<th>Requerimiento no Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: El SAT no manipulara (ingresar, editar y eliminar) los datos de los sensores del sistema.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
</tr>
<tr>
<td>Desarrollado Por: (Darío Suarez)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 15 – (RNFS 02)

<table>
<thead>
<tr>
<th>Código: RNFS-02</th>
<th>Tipo</th>
<th>Requerimiento no Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: El SAT no recibirá los datos si el servidor no está iniciado.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
</tr>
<tr>
<td>Desarrollado Por: (Darío Suarez)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 16 – (RNFS 03)

<table>
<thead>
<tr>
<th>Código: RNFS-03</th>
<th>Tipo</th>
<th>Requerimiento no Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción: El SAT no funcionara si no está conectado a la misma IP del servidor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estado</td>
<td>Avance</td>
<td>Prioridad</td>
</tr>
<tr>
<td>Desarrollado Por: (Darío Suarez)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4. Requerimientos no funcionales del Servidor.

<table>
<thead>
<tr>
<th>Código: RNFS-02</th>
<th>Tipo</th>
<th>Requerimiento no Funcional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción:</td>
<td>El servidor no iniciara al menos que esté conectado a una red.</td>
<td></td>
</tr>
<tr>
<td>Avance</td>
<td>Prioridad</td>
<td>✓</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Personal involucrado en el Sistema de Alerta Temprana.

<table>
<thead>
<tr>
<th>Cargo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Departamento de gestión de Riesgo.</td>
<td>Será el encargado de tomar las medidas adecuadas ante ataque de un fenómeno por inundación.</td>
</tr>
<tr>
<td>Administrador del sistema.</td>
<td>Estará atento al comportamiento del sistema como también a las alertas que se den por parte de los sensores en caso de una emergencia.</td>
</tr>
<tr>
<td>Operador</td>
<td>Se encargará de llevar un control de todos los componentes que forman el sistema caso contrario se dirigirá al técnico para que realice las tareas adecuadas en el sistema.</td>
</tr>
<tr>
<td>Especialista en sistema.</td>
<td>El solo entrara en contacto con el sistema cuando se trate de un problema de la programación de las funciones del sistema de alerta temprana.</td>
</tr>
<tr>
<td>Técnico en Sistemas.</td>
<td>La función que cumplirá es de dar mantenimiento tanto al sistema como a todos los componentes que lo conforma, para que el sistema logre un perfecto funcionamiento a la hora de realizar cada una de sus tareas de monitorización de los sensores y se generen las alertas siempre que haya presencia de inundación.</td>
</tr>
<tr>
<td>Biólogo.</td>
<td>Realiza un estudio sobre los datos que son acogidos por los sensores, para así sacar un análisis sobre lo que está ocurriendo.</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Tabla 20 – (Administrador del Sistema)

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Administrador del Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rol:</td>
<td>Sera el encargado de mantener la infraestructura de la construcción del SAT</td>
</tr>
<tr>
<td>Categoría Profesional</td>
<td>Ing. en Sistema.</td>
</tr>
<tr>
<td>Responsabilidad:</td>
<td>Mantener su infraestructura de desarrollo del software y dar soporte.</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 21 – (Operador del Sistema)

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Operador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rol:</td>
<td>Es el encargado de hacer la revisión de la programación de funciones del Sistema.</td>
</tr>
<tr>
<td>Categoría Profesional</td>
<td>Operador de Sistemas.</td>
</tr>
<tr>
<td>Responsabilidad:</td>
<td>Llevar el control de que no haya falla en la realización de funciones del Sistema.</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 22 – (Especialista en Sistema)

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Especialista en Sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rol:</td>
<td>Dirección de Gestión Ambiental y Seguridad Ciudadana.</td>
</tr>
<tr>
<td>Categoría Profesional</td>
<td>Ing. en Sistema.</td>
</tr>
<tr>
<td>Responsabilidad:</td>
<td>Encargado de la gestión ambiental y la seguridad ciudadana.</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
Tabla 23 – (Técnico en Sistema)

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Técnico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rol:</td>
<td>Revisar que no haya ninguna falla dentro del Sistema.</td>
</tr>
<tr>
<td>Categoría Profesional</td>
<td>Técnico en Sistema.</td>
</tr>
<tr>
<td>Responsabilidad:</td>
<td>Mantener que el Sistema funcione de manera correcta y adecuada.</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

Tabla 24 – (Gestión Ambiental y Seguridad Ciudadana)

<table>
<thead>
<tr>
<th>Nombre:</th>
<th>Edgard Avilés Camacho</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rol:</td>
<td>Dirección de Gestión Ambiental y Seguridad Ciudadana.</td>
</tr>
<tr>
<td>Categoría Profesional</td>
<td>Biólogo.</td>
</tr>
<tr>
<td>Responsabilidad:</td>
<td>Encargado de la gestión ambiental y la seguridad ciudadana.</td>
</tr>
<tr>
<td>Información de Email:</td>
<td>eaviles@vinces.gob.ec</td>
</tr>
<tr>
<td>Información de contacto:</td>
<td>(05)2791367 / (05) 279210</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)
3. **Justificación de Requerimientos a Satisfacer.**

Este proceso hace que el tipo de requerimiento que presenta sea adaptable de una manera segura y que pueda destacarse en el mundo laboral.

La interacción entre los fenómenos naturales por inundación con las comunidades y personas sigue siendo un problema amenazante que hasta el día de hoy no se ven mejoras que beneficien de cualquier modo a las personas, al momento de tomar las decisiones correctas antes la probabilidad de un suceso, con el propósito de contar con la mayor seguridad por parte de las autoridades del Cantón Vinces.

Por tal motivo, gracias a las nuevas tecnologías, nace la necesidad de brindar una solución llevando a cabo el desarrollo de un sistema de alerta temprana que logre mejorar y controlar con las necesidades a los problemas que afrontan los habitantes del Cantón Vinces con las fuertes inundaciones.

El solo hecho de que los departamentos de gestión de riesgo no cuenten con tecnologías modernas que permita llevar el control sobre las crecidas de agua del río que se dan en las diferentes estaciones del año, esto hace que las comunidades estén expuestas a riesgos llevándolos a tener pérdidas de sus bienes.

Las personas pasan angustiadas al sentirse amenazadas por las fuertes crecidas de río, esto hizo que se realice un sinnúmero de investigaciones acorde a sistemas que beneficien la seguridad de la vida de las personas.

Debido a los motivos descritos en la justificación, estos se llevarán por procesos, tareas que traten sobre el análisis, procesos investigativos y el desarrollo de un Sistema de Alerta Temprana.
Considerando el desarrollo dicho sistema, que logre mejorar y llevar el control a las necesidades sobre la crecida del agua en el río beneficiando a las personas brindando nuevas formas de vida y la mayor seguridad en las comunidades.
CAPITULO II.

Desarrollo del Prototipo Tecnológico.

1. Definición del Prototipo Tecnológico.

El Sistema de Alerta Temprana es un prototipo que se basa de la nueva generación tecnológica, el cual es adaptable en función de cubrir un sinnúmero de necesidades por lo que el departamento de gestión de riesgo y los habitantes requieren de un sistema que sea de manejo fácil y que cumpla con todos los requerimientos al momento de alertar contra probabilidad de ocurrencia afectada por los fenómenos por inundación.

Por lo tanto, el desarrollo del Sistema de Alerta Temprana será de beneficio para que el departamento de gestión de riesgos pueda tomar con tiempo las medidas adecuadas ante algún suceso y que los habitantes puedan sentir la plena seguridad en realizar sus actividades.

Para este tipo de aplicación se hizo un estudio de 2 entornos los cuales poseen altos niveles en su lenguaje de programación, estos son:

✓ App Inventor.
✓ Android Studio.

Gracias a el análisis del estudio realizado de estos dos poderosos lenguajes, se decidió escoger la herramienta desarrolladora de aplicaciones móviles como lo es App Inventor, siendo un lenguaje sumamente gratuito el cual se puede hacer uso desde la web por la manera fácil de acceder que tiene hacia su entorno.

Esta herramienta también permite buscar soluciones que logren cubrir las necesidades básicas que presenta los dispositivos móviles.
2. Fundamentación Teórica del Prototipo.

Las aplicaciones móviles hacen su aparición al mundo en los años 90, estas aplicaciones cumplían funciones sumamente básicas, con un diseño poco llamativo, tales como agenda, ringtones, etc. además ya los teléfonos venían con las aplicaciones preinstalada, es decir que no había forma de descargarlas e instalarlas.

Antes su lenguaje de desarrollo era sin estructura, debían llevar una secuencia que le permitiera su ejecución línea tras línea, por lo que no se contaba con una estructura acorde para su desarrollo.

Ahora App es el nuevo nombre por la que se las conocen a las aplicaciones móviles, y estas son desarrolladas en los diferentes de lenguaje de programación que existen hasta la actualidad.

Los teléfonos móviles en ese entonces no contaban con pantallas amplias, sin embargo, en algunos el manejo de la pantalla era táctil, y solían ser llamados como feature phones.

Hoy en día existen aplicaciones tales como: aplicación del control de ejercicios constantemente de una deportista, aplicaciones para el control de pulsos cardíaco, etc.

Esto sirvió de incentivo para la construcción de una aplicación para el sistema de alerta temprana, brinde mejoras en las comunidades más afectadas.

Logrando así la integración de las personas que se encuentran amenazas por las inundaciones, para mejorar y reducir las dificultades creadas por la misma.

Para su debido y adecuado desarrollo de la App se escogió un entorno bien conocido como lo es el SO de Android de manera estable y segura, que sea acorde para llevar este tipo de requerimientos.
2.1. Metodología.

El desarrollo de sistemas y aplicaciones móviles hoy en día muestra un alto grado tecnológico siendo determinante al momento de la elaboración de software.

Por lo tanto, el desarrollo de estas aplicaciones suele utilizar diferentes tipos de metodología con el fin de lograr que su desarrollo sea factible, dichas metodologías pueden ser llevadas por un sinnúmero de procesos como a la vez no, esto quiere decir que pueden ser de manera ágil y compleja.

Un ejemplo sobre las metodologías complejas o tradicionales para construcción de un software, pueden ser Scrum, RUP, MSF, etc., mientras que en el campo de metodologías agiles tenemos: Rad, Waterfall, AUP etc. entre otras.

Se realizó un análisis de las metodologías agiles y tradicionales “complejas” para los procesos de desarrollo del Sistema de Alerta Temprana, al no contar con un tiempo largo para cumplir con su desarrollo, se decidió escoger una metodología que esté acorde con el tiempo de presentación del proyecto, para esto se hizo uso de la metodología AUP “Agile Unified Process” la cual ayudara en la simplificación de procesos y así entregarlo dicho sistema en el menor tiempo de la fecha asignada.

Gracias a la metodología AUP los procesos para la elaboración y desarrollo de software se dan de una manera ordena con el propósito de obtener al final del proyecto un sistema factible.

Cabe recalcar que la metodología AUP puede ser adaptable a proyectos que trabajen a diferentes escalas con el fin obtener su desarrollo en el menor tiempo acordado.
2.1.1. ¿Se debe utilizar el modelo AUP?

El modelo AUP se caracteriza por ser una metodología sumamente útil para la elaboración y desarrollo de software a corto plazo, por lo que trabaja de manera simplificada, esto hace que los procesos brinden una facilidad al momento de utilizarlos de manera ordenada y sistemática, tomando en cuenta el tiempo en cada actividad acorde a las fases con las cuales trabaja dicha metodología.

Esta metodología es una teoría de software que se centra en el desarrollo iterativo e incremental, estableciendo un modelado fácil de entender para el desarrollo de aplicaciones.

Siendo una metodología fácil de entender, esto hace que el manejo de herramientas esenciales como los diagramas de flujo determine un punto importante para la descripción de las actividades para proyectos software.

Características Principales del Modelo de Desarrollo AUP.

- Hace uso de la teoría de desarrollo iterativo e incremental.
- Los proyectos se realizan de forma simplificada, a corto plazo.
- Los riesgos son detectados de manera inmediata.
- Hacen uso de herramientas como casos de uso, siendo la base para el proyecto.
- Definen la arquitectura de software por medio de múltiples modelos.
Fases de la Metodología de Diseño AUP.

✓ Fase de Análisis y Diseño.

El objetivo de esta fase estará presente en los procesos que serán llevados a cabo de acuerdo con la programación de tiempo las cuales serán asignadas a actividades y tareas, realizando una planificación conforme al proyecto (Sistema de Alerta Temprana) para su debido desarrollo.

✓ Fase de Elaboración.

Esta fase se centra en construir la arquitectura acorde al proyecto (Sistema Alerta Temprana), y revisar que dicha arquitectura cumpla con los requerimientos planteados con el propósito que su desarrollo sea factible.
✓ **Fase de Construcción.**

En esta fase se procede a realizar las tareas de codificación y pruebas del proyecto (Sistema de Alerta Temprana), las cuales fueron descritas en la fase de análisis y diseño.

Tabla 25 – (Interacciones del Proyecto)

<table>
<thead>
<tr>
<th>Interacciones del proyecto.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programación y prueba sobre las funcionalidades de monitoreo de los sensores.</td>
</tr>
<tr>
<td>Nº de Interacción:</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>VI</td>
</tr>
<tr>
<td>VII</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>VIII</td>
</tr>
<tr>
<td>IX</td>
</tr>
</tbody>
</table>

Desarrollado Por: (Darío Suarez)

✓ **Fase de Pruebas.**

En esta fase el proyecto (Sistema de Alerta Temprana) debe haber culminado con su desarrollo de una manera adecuada, a su vez se dará con la finalización del sistema con las actividades de:

- Desarrollo por pruebas unitarias como también integrales.
- Cierre del informe técnico.
Para la obtención de los requisitos necesarios para el Sistema, se utilizó las técnicas de observación y entrevista, con el fin de recopilar información útil para su correcto desarrollo.

Análisis.

Una vez realizado la entrevista a la persona encargada del departamento de gestión de riesgo se pudo observar que el departamento no cuenta con una herramienta móvil que provea la información de los niveles de agua existente en el río cuando ocurre algún tipo de eventos naturales (inundaciones) los cuales pueden crear inconvenientes humanos y materiales en la ciudad Vinces.

2.2. Arquitectura.

La arquitectura estará basada en una aplicación móvil que, en otras palabras, no es nada más que un software, por lo que se escogió el lenguaje de programación App Inventor con el propósito de centrarse en su desarrollo, teniendo en cuenta que las aplicaciones desarrolladas por el mismo son compatibles para cualquier teléfono que utilice el sistema operativo Android.

Sin embargo, en muchos casos para que la aplicación se instale y funcione correctamente el teléfono requiere de un software adicional.

La arquitectura utilizar se divide en dos partes Cliente-Servidor, es decir que un equipo tomará la función del servidor mientras que sistema o aplicación móvil forman la parte del cliente.
De manera que el tipo de arquitectura que se rige más a la aplicación móvil a desarrollar son las aplicaciones web.

Ventajas:

- Estas aplicaciones se ejecutan mediante una simple URL.
- Son aplicaciones colaborativas, es decir que son manejadas al mismo tiempo por varios usuarios.

Desventajas:

- El tiempo de respuesta dependerá de la conexión a internet como también de las características que posee el ordenador.
- Solo pueden ser usadas en teléfonos móviles que tenga el mismo SO, con que fue desarrollada la aplicación.
2.3. Tecnología.

2.3.1. Plataforma Arduino.

Este lenguaje de programación Arduino está basado en el lenguaje C++, pero sin embargo Arduino realiza la programación mediante librerías la cuales terminan facilitando por medio de los puertos la comunicación de los pines de entrada como salida de los componentes.

Ilustración 3 – (Plataforma Arduino)

Desarrollado Por: (Darío Suarez)

Sin embargo, con los años este lenguaje de programación se convirtió en el cerebro del desarrollo de miles de proyectos en diferentes campos como la agricultura, la medicina, el control y seguridad para la sociedad, entre otros, sirviendo de ayuda como una solución a las necesidades y desafíos por las cuales atraviesan la sociedad y así dando fin a todos los problemas (Arduino, aprendiendoarduino.wordpress.com, 2016).

2.3.2. App Inventor.

Es una herramienta con un gran potencial para la construcción de aplicaciones móviles, el App Inventor pertenece a Google Labs y es una App que puede ser desarrollarse en los smartphones, siempre y cuando estos medios de móviles trabajen con el SO Android, por lo consiguientes el uso de estas aplicaciones se las pueden dar desde una PC Lenovo como también HP, siempre y cuando tengan la capacidad de soportar el sistema Android.
App Inventor ha llegado a formar parte de las innovaciones de alto grado hasta la actualidad, por lo que ahora son las personas encargadas de realizar su propia aplicación con un pro o beneficio por una buena causa.

Por lo general, para lograr el desarrollo de una aplicación sencilla, solo se debe contar con tecnologías como: en sí un navegador web mientras, por otra parte, teléfonos, tablets, con sistema Android (RAUL, 2017).

2.3.3. PostgreSQL:

Es un gestor base de datos se caracteriza por ser uno de los más populares del mundo de código abierto, fue desarrollada en los lenguajes tales como: lenguaje C y C++.
PostgreSQL se encarga de almacenar información en forma de tablas, trabaja de manera eficiente, es multisistema, es de la propiedad de Oracle.

Es compatible para cualquier SO como, por ejemplo: Unix, Windows, Linux, entre otros, este gestor puede o no estar acompañado en su entorno de programas como: el servidor apache, PHP, etc. (NAVIA, 2018).

2.3.4. NetBeans

Es un entorno de programación de código abierto principalmente trabaja por módulos los cuales está conformado por un conjunto de componentes, teniendo en cuenta que es un leguaje sumamente gratuito de uso libre, un módulo no es nada más que un archivo que tiene integrado clases de java, estos archivos suelen interactuar con las Apis.

![NetBeans Logo](image)

Ilustración 6 – (NetBeans)

Desarrollado Por: (Darío Suarez)

Sin embargo, se debe tener en cuenta que NetBeans IDE tiene la magnitud de soportar el desarrollo de diferentes tipos de aplicaciones móviles (RONALD, 2018).

JSP se encarga de la creación de contenidos netamente dinámicos, estos solo se muestran del lado del cliente, es decir en el navegador y terminan ejecutándose en el lado del servidor (Largo, 2016).
2.3.5. Arduino Mega.

Es una placa la cual solo ha sido ampliada de acuerdo con la placa de Arduino uno, en su totalidad dicha placa lleva integrado un micro controlador de la familia Atmega 2560, por lo tanto, al igual que la placa de Arduino uno esta está formada por pines tanto de salida como de entrada, los cuales suelen ser analógicos como también digitales.

![Ilustración 7 – (Placa Arduino)](image)

Desarrollado Por: (Darío Suarez)

Esta placa está formada por 54 pines de los cuales 14 de ellos solo serán utilizados como salidas, mientras que 16 pines estarán disponibles como entrada.

Por lo general Arduino mega ya viene construido con el fin de que el micro controlador que trae la placa incorporado entre en acción, al momento de conectar Arduino con la PC mediante el cable USB o también por una batería externa de 9V (González, 2013).
2.3.6. **Bluetooth.**

Es un sistema que trabaja de manera inalámbrica, su función es la de transferir datos, archivos, imágenes entre otros entre dispositivos, pero a una distancia corta

![Bluetooth](image1)

Ilustración 8 – (Bluetooth)

Desarrollado por: (Darío Suarez)

Este sistema es muy utilizado por diferentes tipos de dispositivos como los son: computadoras portátiles, dispositivos móviles, impresoras, computadoras de escritorios, auriculares entre otros (Martín, 2013).

2.3.7. **Módulo SIM900.**

Es una tarjeta sumamente completa, la cual está basada en un módulo “SIM900” sus conexiones las realiza de manera inalámbrica, dicha tarjeta se la puede usar con los diferentes modelos de Arduino, la función de esta tarjeta es la de enviar mensaje de texto, realiza la función de llamar y la de envió de mensaje al correo electrónico.

![SIM900](image2)

Ilustración 9 – (Modulo SIM900)

Desarrollado Por: (Darío Suarez)
La comunicación de esta tarjeta va siempre conectada al micro controlador de Arduino realizando la comunicación por medio de comandos AT.

En vista de que el GSM es el más utilizado para los sistemas de comunicaciones, siendo la transmisión de voz como la primera opción, mientras que la segunda vendría hacer la transmisión de datos (Lara, 2015).

2.3.8. Protoboard.

Un Protoboard es un herramienta muy útil para el desarrollo de circuitos, tiene la forma de un tablero y los protoboard están cubiertos por orificios muy pequeños los cuales se en encuentran conectados uno con otro por una laminita de metal, que permitirán llevar con facilidad la optimización del cableado y las la conexión de los componentes como son las resistencias, potenciómetros, sensores entre otros, con el fin de darle una mejor diseño al circuito, por otra parte también podemos destacar que el protoboard está formado por dos áreas importantes que son los buses y las pistas.

Ilustración 10 – (Protoboard)
Desarrollado Por: (Darío Suarez)

Los protoboard son tableros que están diseñado por tres partes como son: el canal central que es el encargado de mantener conectado los circuitos integrados y se encuentra ubicado en
la parte media, aislados de los dos lados del circuito. La velocidad con la que suelen trabajar los protoboard tiene una variación de 3 a 5A (330ohms, 2016).

2.3.9. **Sensor Ultrasónico HC -SR04.**

Este módulo es una herramienta la cual está formada por dos transductores trabajan conjuntamente al mismo tiempo, estos módulos hacen la interacción entre un objeto, por lo que permite medir la distancia a la que se encuentra dicho objeto.

![Ilustración 11 – (Sensor Ultrasónico HC – SR04)](image)

Desarrollado Por: (Darío Suarez)

Por lo tanto, su funcionamiento es fácil ya que consiste en la detección de un objeto emitiendo un sonido cada vez que el objeto sea detectado por los transductores (Muchotrassto, 2018).
2.3.10. Sensor de Agua.

Es un dispositivo muy útil para proyectos, ya que permiten la detección de agua, el sensor es recomendado utilizarlo para con tensiones bajas y altas.

Este sensor esta conformados por líneas donde pasa energía, una vez que el sensor haga contacto con el agua las líneas de conductividad se cierran formándose un circuito, determinando una caída de tensión la cual se dará por el pin de señal, es decir el agua se pondrá en marcha siempre y cuando funcione como un interruptor fusionando con el circuito (dcervantes, 2016).

2.3.11. Servo Motor.

El uso de servos motores es muy importante, por lo que solo hay que indicar el Angulo para el control de posición del eje en un tiempo dado.
En estos motores se puede hacer un control de velocidad de giro, considerando el rango que utiliza para moverse entre 0 a 180°, teniendo en cuenta que solo vienen programados para que su giro llegue a 180°, las velocidades que ejercen para dar a vuelta son muy pequeñas en comparación a los motores los cuales utilizan corriente continua.

La tensión de alimentación de los servos están en un rango 4,8V a 7,2V, el valor en el cual un servo puede girar de la mejor manera es 6V (Antony, 2016).

2.3.12. Relé.

Es un actuador o dispositivo electrónico que realiza la función de accionar un juego de encendido o apagado de un circuito esto se da siempre y cuando el relé está en un rango de energía de 0 o 5V de energía, ya que es sumamente importante saber el manejo de este dispositivo, si el relé esta a los 5V permitirá el paso de corriente caso contrario si esta 0V se interrumpirá y se formará una barrera el cual no permitirá el paso de corriente.

La conexión correcta de los pines para así pueda funcionar el relé, primeramente, debemos tener presente que el relé tiene tres pines los cuales son: el pin de tierra o GND el cual estará conectado a unos de los pines que se encontrara señalado como GND, el segundo pin ira conectado directo a uno de los pines de 5V y por último la señal que es el encargado de accionar el juego de encendido o apagado y estará conectado a uno de los pines digitales (Ruiz, 2018).
2.3.13. Bomba de Agua Sumergible.

Es un dispositivo hidráulico que se utiliza con el propósito de aumentar la energía por medio de un caudal de agua, estas bombas suelen ser controladas por la plataforma Arduino, y se les puede dar las opciones de encendido y apagado, el uso de estos componentes es muy importantes en instalaciones, como un sistema que permita controlar el abastecimiento y fluído de agua (LLAMAS, 2016).

![Bomba de Agua Sumergible](image1)

Ilustración 15 – (Bomba de Agua Sumergible)
Desarrollado Por: (Darío Suarez)

Un Buzzer o también conocido como zumbador, este dispositivo generador de sonido está formado por 3 pines de los cuales entraran en función solo los 2 del extremo, uno que irá conectado a tierra “GND” y el otro pin a la señal “S”, mientras que el pin intermedio trabaja como alimentador a 5V “VCC” (Llamas, 2016).

![Buzzer](image2)

Ilustración 16 – (Buzzer)
Desarrollado Por: (Darío Suarez)
2.3.15. Leds.

Un led no es nada más que un diodo o componentes, los cuales son los encargados de generar luz, al tener contacto por una corriente mínima (LUIS, 2015).

![Imagen de Leds]

Ilustración 17 – (Leds)
Desarrollado Por: (Darío Suarez)

2.3.16. Resistencias.

Son componentes electrónicos que están formado por dos terminales, los cuales se introducen en los orificios de un protoboard para el desarrollo de los circuitos, cuya función es la de dividir el voltaje entrante con fin de devolver en la salida un voltaje calculable (Arduino, 2018).

![Imagen de Resistencias]

Ilustración 18 – (Resistencias)
Desarrollado Por: (Darío Suarez)
2.3.17. Cable Macho - Hembra.

Son conectores muy útiles para la realización de circuitos, el manejo de estos conectores es sumamente fácil, llegando a tener un calibre de 16AWG, los cuales tiene en sus extremos dos terminales tanto macho y hembra con una longitud de 15cm, 20cm o 40cm., son creados para la determinación de conexiones de dispositivos como también las conexiones entre los puntos del protoboard formando circuitos geniales (330ohms, 2016).

Ilustración 19 – (Cables Macho/Hembra)

Desarrollado Por: (Darío Suarez)
3. Objetivos del Prototipo:

3.1. Objetivo General.

➢ Desarrollar un sistema de alerta temprana que ayude a los habitantes del Cantón Vinces a evitar, prevenir y enfrentar los fenómenos naturales por inundaciones.

3.2. Objetivos Específicos.

➢ Identificar los 3 tipos de niveles de la crecida del río antes alguna probabilidad de ocurrencia por inundación.

➢ Desarrollar una herramienta para dispositivos que sirva de control en tiempo real como medio de comunicación móvil.

➢ Crear un sistema de alerta temprana eficiente para el control y seguridad de la vida de los habitantes.
4. Diseño del Prototipo.

La aplicación móvil SAT para los fenómenos naturales por inundación, será una aplicación realizada para los SO, Android, esta hará interacción con los sensores ultrasónicos HC -SR04, siendo la encargada de almacenar los cambios de estado del río que se darán durante el transcurso del día, almacenando información diariamente.

Estos reportes serán analizados por la persona del departamento de gestión de riesgo para analizar las variaciones por día que se dan en las crecidas del río.

Los requerimientos que se ejecutaran en la aplicación son los propósitos por alcanzar para que sea una aplicación factible.

Administrador.

✓ Será el encargado del departamento de gestión de riesgo que estará a cargo con el funcionamiento del Sistema.
✓ Iniciará el sistema desde la Pc para luego proceder a iniciar desde el dispositivo móvil.
✓ Accederá al Sistema mediante usuario y contraseña.
✓ Debe tener presente que tanto la PC y el dispositivo móvil debe estar conectados a las misma IP.
✓ Visualizará los datos desde su dispositivo móvil mediante una App en tiempo real, también podrá realizar la función de consultar la información que se generando en ese momento.
✓ La App almacenara los datos por día, es decir que una vez que se cumplan las 24 horas, se eliminaran todos los datos, pero se irán almacenando constantemente en el sistema.
✓ Recibirá las alertas por medio de mensaje, llamada y se observará el estado de nivel en que se encuentra el río para la toma de decisiones.
4.1. Diseño de Caso de Uso

Ilustración 20 – (Diseño Caso de Uso)
Desarrollado Por: (Darío Suarez)

4.2. Diseño de Actividades

Ilustración 21 – (Diseño de Actividades)
Desarrollado Por: (Darío Suarez)
4.3. Diseño de clase

Ilustración 22 – (Diseño de Clase)
Desarrollado Por: (Darío Suarez)

1.1. Diseño conceptual del funcionamiento del Sistema

Ilustración 23 – (Diseño Conceptual del funcionamiento del sistema)
Desarrollado por - (Darío Suarez)
Para llegar alcanzar todos los resultados favorables del Sistema, primero se empezó
diseñando un circuito en “fritzing” de todos los componentes con sus respectivas conexiones,
este programa permite la elaboración de circuito de una manera ordenada siendo de suma
importancia para las personas que lo deseen poner en práctica.

1.2. Diseño de conexiones del circuito

Ilustración 24 – (Diseño del prototipo)
Desarrollado Por: (Darío Suarez)
1.3. Diseño de conexiones del circuito

Ilustración 25 – (Diseño de conexiones del circuito)

Desarrollado Por: (Darío Suarez)
1.4. Diseño de circuito impreso

Ilustración 26 – (Diseño de circuito impreso)

Desarrollado Por: (Darío Suarez)
2. Ejecución y/o ensamblaje del prototipo

2.1. Ejecución del sistema

A continuación, se mostrarán cada una de las pantallas que representan la interfaz, de las cuales está conformada la aplicación móvil que utilizará el sistema, se describirá cada una de las funciones a realizar. Antes de empezar con el manejo de la aplicación se debe enviar a ejecutar el sistema, luego nos mostrará en el navegador “SISTEMA INICIADO, es decir, que el administrador ya podrá interactuar con la aplicación móvil.

SISTEMA INICIADO

EL SISTEMA DE ALERTA TEMPRANA PARA NOTIFICACIÓN DE RIESGO DE INUNDACIONES PARA EL CANTÓN VINCES (SAT)

Ilustración 27 – (Ejecución del sistema)

Desarrollado Por: (Darío Suarez)
Ejecución de la aplicación

Al iniciar el sistema desde la aplicación móvil el administrador visualizara el formulario de configuración donde procederá a escribir la dirección IP, teniendo en cuenta que debe ser igual a la que esté utilizando el servidor.

![Imagen de configuración de IP](image)

Ilustración 28 – (Configuración de IP)

Desarrollado Por: (Darío Suarez)

Luego de haber realizado con éxito la configuración de IP con la que se encuentra trabajando el servidor, al guardar los datos de la IP se realiza un cambio de pantalla de “Iniciar Sesión” en la cual se llenaran los campos de usuario y contraseña, teniendo en cuenta que si la IP que ha sido configurada es incorrecta nos regresara a la ventana de configuración, caso contrario si los datos de usuario y contraseña no son los correctos, mostrará un mensaje “datos incorrectos”, pero si son los correctos nos dirigirá a la ventana del panel.
Ilustración 29 – (Inicio de sesión)

Desarrollado Por: (Darío Suarez)

En la siguiente ventana que será visible en la aplicación móvil podremos observar que se realizará la conexión del Bluetooth y se visualizaran los datos del sistema dependiendo de los estados de nivel del río.

Ilustración 30 – (Estado del sistema)

Desarrollado Por: (Darío Suarez)
Por último, la aplicación móvil permite realizar la función de consultar los datos obtenidos por los sensores con la fecha y hora actual del sistema.

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Hora</th>
<th>Sensor</th>
<th>Valor</th>
<th>Estado</th>
<th>Estado de Compuerta</th>
<th>Valor del sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-09-27</td>
<td>13:08:03.975775</td>
<td>s1</td>
<td>6</td>
<td>Zona Segura</td>
<td>Estado Normal</td>
<td>1</td>
</tr>
<tr>
<td>2018-09-27</td>
<td>13:08:05.444476</td>
<td>s1</td>
<td>6</td>
<td>Zona Segura</td>
<td>Estado Normal</td>
<td>1</td>
</tr>
<tr>
<td>2018-09-27</td>
<td>13:08:05.475725</td>
<td>s1</td>
<td>6</td>
<td>Zona Segura</td>
<td>Estado Normal</td>
<td>1</td>
</tr>
<tr>
<td>2018-09-27</td>
<td>13:08:06.475038</td>
<td>s1</td>
<td>6</td>
<td>Zona Segura</td>
<td>Estado Normal</td>
<td>0</td>
</tr>
<tr>
<td>2018-09-27</td>
<td>13:08:07.584373</td>
<td>s1</td>
<td>6</td>
<td>Zona Segura</td>
<td>Estado Normal</td>
<td>0</td>
</tr>
</tbody>
</table>

Ilustración 31 – (Consulta de los datos)
Desarrollado Por: (Darío Suarez)

2.2. Ensamblaje del prototipo.

Una vez obtenido los 9V de la batería se procederá a conectar la tarjeta Arduino mega teniendo en cuenta el que el voltaje mínimo es 6V y el máxímo 12V por el sistema, dicho sea esto se verifica que el led verde enciende indicando el funcionamiento correcto de la tarjeta.

Ilustración 32- (Funcionamiento de la tarjeta Arduino mega)
Desarrollado por: (Darío Suarez)
Luego de observar que la tarjeta de Arduino mega funcionó de manera correcta se empezó a realizar todas las conexiones de los módulos para el prototipo utilizando las señales tanto analógica como digitales.

Ilustración 33 – (Conexiones de los módulos para el prototipo)
Desarrollado por: Darío Suarez

Realizado cada una de las pruebas de funcionamiento de cada uno de los sensores se pudo determinar que los resultados de su funcionalidad fueron los favorables para empezar con la instalación del prototipo en la maqueta que hará la simulación sobre el control de los niveles del río.

Ilustración 34 – (Instalación del prototipo en la maqueta)
Desarrollado por: Darío Suarez
Por último, se realizaron cada una de las pruebas y se pudo determinar que el prototipo cumplió con los requisitos mencionados.

Ilustración 35 – (Pruebas del prototipo)

Desarrollado por: (Darío Suarez)
CAPÍTULO III.

Evaluación del prototipo

1. Plan de evaluación.

1.1. Funcionalidad y facilidad de uso

Tabla 26 – (Funcionalidad y facilidad de uso)

<table>
<thead>
<tr>
<th>Destinatario</th>
<th>Docente guía</th>
<th>Fecha</th>
<th>Actividades desarrolladas</th>
<th>Observaciones</th>
<th>Cambios en el sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Usuario</td>
<td>Ing. Ana Del Roció Fernández Torres</td>
<td>03/9/2018</td>
<td>Pruebas de visualización de la información generada por los sensores.</td>
<td>Los resultados fueron logrados con éxito.</td>
<td>Modificación en la ventana de mostrador de información.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>04/9/2018</td>
<td>Pruebas de encendido y apagado del buzzer</td>
<td>El buzzer cumplió con su funcionalidad de una manera satisfactoria</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>05/9/2018</td>
<td>Pruebas de encendido y apagado de bomba</td>
<td>Su funcionamiento fue el correcto</td>
<td>Ninguna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>06/9/2018</td>
<td>Pruebas del abrir y cerrar compuerta</td>
<td>Los resultados lograron ser favorables</td>
<td>Ninguna.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>07/9/2018</td>
<td>Pruebas de visualización de la información desde diferentes dispositivos</td>
<td>Ceros inconvenientes</td>
<td>Ninguna.</td>
</tr>
</tbody>
</table>

Desarrollado por – (Darío Suarez)
1.2. Estabilidad

Tabla 27 – (Estabilidad)

<table>
<thead>
<tr>
<th>Destinatario</th>
<th>Docente guía</th>
<th>Fecha</th>
<th>Actividades desarrolladas</th>
<th>Observaciones</th>
<th>Cambios en el sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware</td>
<td></td>
<td>10/9/2018</td>
<td>Pruebas sobre la persistencia de datos</td>
<td>Los datos se mostraron durante el uso de la aplicación</td>
<td>Ninguna.</td>
</tr>
<tr>
<td>Hardware</td>
<td>Ing. Ana Del Roció Fernández Torres</td>
<td>11/9/2018</td>
<td>Pruebas de los medios de alertas</td>
<td>Realiza los envíos de mensajes y llamadas de la forma correcta</td>
<td>Ninguna.</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td>12/9/2018</td>
<td>Pruebas de configuración de IP</td>
<td>Su configuración es de manera rápida</td>
<td>Ninguna.</td>
</tr>
<tr>
<td>Software</td>
<td></td>
<td>13/9/2018</td>
<td>Pruebas sobre la funcionalidad del sistema</td>
<td>La App cumplió con lo esperado</td>
<td>Mejoras en las tareas a realizar.</td>
</tr>
</tbody>
</table>
1.3. Compatibilidad

Tabla 28 – (Compatibilidad)

<table>
<thead>
<tr>
<th>Destinatario</th>
<th>Docente guía</th>
<th>Fecha</th>
<th>Actividades desarrolladas</th>
<th>Observaciones</th>
<th>Cambios en el sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Ing. Ana Del Roció Fernández Torres</td>
<td>17/9/2018</td>
<td>Pruebas de las funciones del sistema</td>
<td>El sistema logró alcanzar resultados favorables</td>
<td>Mejoras de las funciones del sistema.</td>
</tr>
</tbody>
</table>

Desarrollado por – (Darío Suarez)

1.4. Interpolaridad

Tabla 29 – (Interpolaridad)

<table>
<thead>
<tr>
<th>Destinatario</th>
<th>Docente guía</th>
<th>Fecha</th>
<th>Actividades desarrolladas</th>
<th>Observaciones</th>
<th>Cambios en el sistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software</td>
<td>Ing. Ana Del Roció Fernández Torres</td>
<td>20/9/2018</td>
<td>Test de visualización, almacenamiento y consultada de datos de los sensores en una App</td>
<td>Mostrador de información en tiempo real de acuerdo con las funciones asignadas.</td>
<td>Ninguna.</td>
</tr>
<tr>
<td>Hardware</td>
<td></td>
<td>21/9/2018</td>
<td>Test del envío de mensaje y realización de llamada como medios de alertas.</td>
<td>Estas funciones del sistema se ejecutaron correctamente.</td>
<td>Ninguna.</td>
</tr>
</tbody>
</table>

Desarrollado por – (Darío Suarez)
2. Resultados

Tabla 30 – (Resultados)

<table>
<thead>
<tr>
<th>Plan de evaluación</th>
<th>Aceptación</th>
<th>Rechazo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funcionalidad y facilidad de uso</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>Estabilidad</td>
<td>96%</td>
<td>4%</td>
</tr>
<tr>
<td>Compatibilidad</td>
<td>98%</td>
<td>2%</td>
</tr>
<tr>
<td>Interoperabilidad</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Resultados de la evaluación</td>
<td>98%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Desarrollado por – (Darío Suarez)

2.1. Análisis de resultado

Una vez finalizadas todas las pruebas de evaluación se logró obtener información relevante para la construcción del prototipo, fue necesario realizar una aplicación móvil de manera que los datos obtenidos por los sensores se visualicen en la pantalla en tiempo real, utilizando leds como indicadores que diferencien cada uno de los estados del rio, así como fue necesario la creación de una base de datos, para que realice la función de almacenamiento y consultas de información, al ser una aplicación útil de fácil manejo para los usuarios, se observó que en la etapa de funcionabilidad tanto la parte hardware como software alcanzaron resultados satisfactorios llegando a tener un 98% en la ejecución de cada una de las funciones.

En la etapa de estabilidad se presentaron inconvenientes al momento de realizar las pruebas del sistema, afectando negativamente los niveles de aceptación, obteniendo el 96% de aprobación del sistema. Mientras que en la etapa de compatibilidad el sistema alcanzo una cifra de 98 %, teniendo en cuenta que puede ser adaptable a diferentes dispositivos con SO. Android.
En cuanto a la interpolaridad, el sistema logró alcanzar el 100% de los resultados esperados de manera factible. Sin embargo, los resultados indican que el Sistema alcanzó el 98% del nivel de aceptación, por lo tanto, el 2% de negatividad corresponde a las adecuaciones que se presentaron durante la evaluación de pruebas y funcionalidades del Sistema.
3. Conclusiones y recomendaciones

3.1. Conclusiones

❖ Al haber concluido con el proyecto se pudo determinar que el Sistema servirá de aporte para las personas de la ciudad de Vinces llevando un control ante la probabilidad de ocurrencia de que se genere una inundación.

❖ El desarrollo de la aplicación móvil, ofrece una herramienta tecnológica a la persona encargada del departamento de gestión de Riesgo, el mismo que podrá monitorizar en tiempo real los cambios de estado del nivel agua que se encuentra en el río.

❖ El sistema hará uso de los medios de comunicaciones GSM para informar al encargado del departamento de gestión de Riesgo sobre el estado actual del nivel de agua del río.

3.2. Recomendaciones

❖ El sistema debe hacer uso exclusivamente de un servidor, el cual no esté siendo utilizado para otros fines y que el sistema pueda realizar su ejecución de manera correcta, además el servidor deberá estar siempre en línea.

❖ En el caso que la persona encargada del sistema proceda a realizar la ejecución, debe darse cuenta que la IP que está utilizando el servidor sea igual a la que está utilizando el dispositivo móvil, caso contrario no podrá conectarse con el sistema.

❖ Se sugiere la compra de un generador de energía que provea el suministro eléctrico al servidor y los depósitos auxiliares utilizados en el Sistema de Alerta Temprana.
Bibliografía

330ohms. (05 de Febrero de 2016). Obtenido de https://www.330ohms.com/blogs/blog/85215044-
que-son-los-jumpers

https://blog.330ohms.com/2016/03/02/protoboards/

http://panamahitek.com/que-es-y-como funciona-un-servomotor/

https://aprendiendoarduino.wordpress.com/2016/03/31/lenguaje-de-programacion-
arduino/

Arduino, A. (11 de Abril de 2018). Obtenido de
https://aprendiendoarduino.wordpress.com/tag/resistencia/

Súbitas y Fenómenos Atmosféricos en el Área Metropolitana de Barranquilla. Scientia et
technica, 303.

sensor-de-nivel-de-agua-con-arduino/

García, G. A. (08 de Febrero de 2013). Obtenido de panamahitek.com: http://panamahitek.com/uso-
de-pantalla-lcd-con-arduino/

http://panamahitek.com/arduino-mega-caracteristicas-capacidades-y-donde-conseguirlo-
en-panama/

store.com/TUTORIALES/sim900-gsm-shieldarduino/

pasos-java-web-jsp-servlets/

Llamas, L. (01 de Agosto de 2016). luisllamas.es. Obtenido de https://www.luisllamas.es/arduino-
buzzer-activo/

LLAMAS, L. (18 de Diciembre de 2016). luisllamas.es. Obtenido de
https://www.luisllamas.es/bomba-de-agua-con-arduino/

Luis, L. (11 de Noviembre de 2015). luisllamas.es. Obtenido de https://www.luisllamas.es/encender-
un-led-con-arduino/

https://www.tuexperto.com/2013/05/06/que-es-bluetooth-y-para-que-sirve/

http://www.muchotrasto.com/srf05.php

Análisis Foda.

<table>
<thead>
<tr>
<th>ANALISIS FODA CONTRA LAS INUNDACIONES EN EL CANTON VINCES:</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOTALEZA:</td>
</tr>
<tr>
<td>Cuenta con la predisposición por parte del gobierno en caso de emergencia.</td>
</tr>
<tr>
<td>➢ Se encuentra localizado el COE Cantonal.</td>
</tr>
<tr>
<td>OPORTUNIDAD:</td>
</tr>
<tr>
<td>➢ Dar un mejor servicio a los habitantes en caso de catástrofes producidas por inundaciones.</td>
</tr>
<tr>
<td>DEBILIDADES:</td>
</tr>
<tr>
<td>➢ No cuentan con infraestructura adecuada.</td>
</tr>
<tr>
<td>➢ No cuentan con las tecnologías en punta.</td>
</tr>
<tr>
<td>AMENAZA:</td>
</tr>
<tr>
<td>➢ Genera pérdidas de bienes sociales, económicos en las comunidades y en algunos casos pueden llegar a ocasionar pérdidas de vidas humanas.</td>
</tr>
</tbody>
</table>
Árbol del Problema:

SISTEMAS DE ALERTA TEMPRANA PARA NOTIFICACIÓN DE RIESGO DE INUNDACIONES PARA EL CANTÓN VINCES (SAT).

Falta de Capacitación.

Falta de un SAT.

Índice bajo de los medios de comunicación

Remuneraciones bajas inadecuadas

Población mal informada.

Probabilidades de ocurrencias de los fenómenos, por inundación.

Necesidad de sistematización y divulgación de información sobre riesgo

Pérdida y daños en viviendas.

Toma de decisiones inadecuadas contra las inundaciones

Dejan pérdida de vidas y heridos.
Inundaciones en Vinces

Ilustración 36 - Inundación en el Cantón Vinces 1
Desarrollado Por: Darío Suarez

Ilustración 37 - Inundación en el Cantón Vinces 2
Desarrollado por: Darío Suarez
Ilustración 38 - Inundación en el Cantón Vinces 3
Desarrollado por: Darío Suarez

Derrumbe por inundación

Ilustración 39 - Derrumbe en el Cantón Vinces
Desarrollado por: Darío Suarez
Entrevista dirigida a la persona encargada de administrar el departamento de gestión de riesgo.

1) ¿Qué cargo ocupa usted actualmente en el departamento de sistema de gestión de riesgo?

2) ¿Cree usted que las inundaciones son una fuerte amenaza para el Cantón de Vinces?

3) ¿Actualmente el departamento de gestión de riesgo cuenta con un sistema de alerta temprana contra inundaciones?

4) ¿Considera usted el uso de una Aplicación móvil como herramienta útil que permita llevar el control sobre los niveles de agua del río?

5) ¿Considera usted una mejora para la seguridad de las personas el desarrollo de un Sistema de alerta temprana?